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Abstract: Leaf temperature represents the mixed effects of solar radiation, temperature, and CO2

enrichment on the potential production of greenhouse vegetables. However, smart farm applications
that monitor and account for changes in leaf temperature are limited. This study developed new
hardware and software components for leaf temperature sensing integrated into a conventional smart
farm system. We demonstrated a new system to monitor leaf temperatures and improve crop yield at
two greenhouse tomato and strawberry farms in South Korea. We observed a rapid decline in leaf
temperature at both farms when the indoor air temperature decreased. This pattern often corresponds
to stagnant CO2 assimilation. The results suggest that leaf temperature sensing is practical for slow
aeration and heating that is required to optimize photosynthetic efficiency, especially in the morning
and when leaf temperatures become high (over 25 ◦C). Specifically, smart farm implementation
with leaf temperature sensing increased the yield of tomatoes by 28–43%. Furthermore, our study
highlights the need to develop leaf temperature models for smart greenhouse farming that interact
with nutrient and water supplies.

Keywords: leaf temperature; environmental sensor development; vegetables; smart greenhouse farming

1. Introduction

Controlled environment agriculture (CEA) is a form of intensive farming that ensures
reliable crop protection regardless of adverse environmental conditions. The agronomic
importance of protected cultivation is evident, allowing efficient and high crop production
in soils or substrates across various land and geographic constraints [1–3]. Different CEA
types include greenhouse, hydroponic, aeroponic, and aquaponic systems. Each system is
characterized by high technology and capital investment [4]. Compared to open fields, the
total yield was 3.8 times and 2.8–25.0 times higher for tomato and other vegetable crops in
hydroponic production, respectively [5]. Similarly, Maureira et al. [6] reported a 6.4 times
higher tomato yield (kg m−2) in high-tech greenhouses compared to open fields. Most of
these systems provide a platform for the precise control of temperature, humidity, carbon
dioxide (CO2), oxygen (O2), and light, which are the main constraints on the efficiency of
crop growth. Recent advances in CEA using sensor technologies have produced data and
provided more accurate plant growth models [7].

Cultivating vegetables using protected structures has a long history, and modern
systems appear in greenhouse cultivation [8]. Innovations in greenhouse vegetable produc-
tion have been made in designing the structure, type, and quality of covering materials;
screening high-yielding cultivars; and improving crop management practices, including
microclimate control and integrated pest management [9]. In addition, a recent innovation
in CEA is the on-demand cost-effective maintenance and precision control of greenhouse
environments to achieve economic crop growth and yields. Environmental variables, in
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addition to management inputs and crop outputs of the CEA model, are related to the
efficiency of a greenhouse system [10]. Standard variables include temperature, humidity,
evapotranspiration, CO2 concentration in the air, and the amount of light entering the
system [11]. For example, because photosynthesis requires energy from light, the light envi-
ronment must be controlled. Xin et al. [12] highlighted the measurement of light saturation
points to optimize the use of light for greenhouse crop production under different tempera-
tures and CO2 levels. The maintenance and management of these primary variables should
be based on environmental monitoring frameworks and the use of up-to-date information.

There is an ongoing effort to control multiple environments, including light and
energy, fertilizers, water, and other processes (relating to crop growth, productivity, and
quality) [13,14]. Such approaches are flexible and tailored to enhance resource use efficiency
due to the ongoing depletion of natural resources while using lower labor inputs and
precisely optimizing growth conditions. For example, studies have focused on energy
efficiency [1] and water use [3,15]. These studies suggest that new crop growth control is
the key to widening smart farm applications regarding sustainability, labor saving, and
profitability. Other controls are used to detect and manage nutrient deficiencies, pests,
and diseases [16]. Compared to conventional field cropping systems, evaluating how
exactly a smart farm performs and creates an environmentally friendly footprint, such as
acidification and salt accumulation in soils [17] and the potential for global warming [18],
is crucial. More importantly, a smart farm system is considered an option that can address
global challenges facing agriculture, such as food security, environmental pollution, and
climate change [19]. Such new knowledge offers opportunities for sustainable agricultural
production and the better use of natural resources. However, the effects of common
factors on indoor crop growth and development may differ because a wide range of smart
farm components are considered for different applications. For vegetable growth to be
standardized and optimized, selecting and focusing on relevant stress factors is challenging
due to the complexity of technology [20].

There is relatively little attention paid to monitoring plant parameters in addition
to environmental parameters, such as temperature, relative humidity, light, and CO2
concentration [21]. Temperature near the surface of various crop parts affects plant growth
and metabolism. In particular, experiments have shown that leaf temperature represents
the effects of temperature on photosynthetic carbon metabolism [22]. If the leaf temperature
is too high or too low, enzyme activities related to photosynthesis are likely to decrease,
followed by a decline in photosynthesis, which limits plant growth and development. Leaf
temperature is also associated with water vapor pressure inside the leaves, which drives
transpiration [23]. Leaf temperature can proxy for plant activities to assess crop health
and management. Therefore, the potential benefits of leaf temperature sensing can be
used to better understand the physiological state, productivity, and input methods (e.g.,
irrigation) [24].

There is a need to focus on the influence of leaf temperature on crop performance,
which is essentially related to the greenhouse microclimate due to its effect on heat, CO2
exchange, and water availability [25]. Leaf temperature measurements provide a baseline
for optimizing leaf photosynthesis via heating, aeration, and nutrition and water supply.
Leaf temperature is also the most associated with solar radiation and air temperature among
the internal greenhouse conditions, which can be used to detect temperature stresses in
crops. However, controlling management inputs to obtain optimal leaf temperatures is
rarely considered in a greenhouse system. So far, no control setting is recommended
for modifying leaf temperature. Therefore, there is a need for new input data on leaf
temperature to enable the planning for (1) executing aeration, especially in the winter;
(2) operating screens and opening and closing of thermal curtains; and (3) determining
appropriate timing and duration for nutrition supply.

Despite the importance of leaf temperature sensing in greenhouses, few studies have
provided a conceptual design, sensor composition, and configuration for practical appli-
cation in protected horticulture. Thus, we aimed to provide a design concept for a leaf
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temperature sensor and integrate it into an existing smart greenhouse system. Based on leaf
temperature monitoring, we demonstrated the management and control of primary inputs
to ensure optimum growth conditions for agronomically important vegetable commodities
such as tomatoes.

2. Materials and Methods
2.1. Design of a Leaf Temperature Sensor

Factors considered essential for crop growth include management inputs and variables
used as proxies for crop performance and environmental conditions [21]. Management-
related variables include the concentration of the supplied nutrient solution and the amount
of irrigation. Variables related to crop performance and environmental conditions include
leaf temperature, ground temperature, light condition, and medium moisture content.
Sensing these variables is necessary as they influence the productivity and profitability of
horticultural vegetables (Table 1).

Table 1. A “KS X 3266” smart greenhouse, equipped with standard sensors for monitoring in-
door/outdoor environments (references) and a leaf temperature sensor (this study). The terms listed
here are referenced to the Foundation of Agricultural Technology Commercialization & Transfer,
Korea.

Component Group Variable Description Detection
Range 1

Standard sensors

Air
(weather)

Temperature Indoor and outdoor air
temperature −20–80 ◦C

Humidity 2 Relative humidity in the
atmosphere 0–100%

Light intensity Light intensity (solar radiation)
inside and outside the greenhouse

0–2000
Watts m−2

Light integral The number of active photons in
the 400–700 nm range

0–2000
µmol m−2 s−1

CO2
The concentration of CO2 in

the atmosphere 0–3000 ppm

Wind Wind speed and wind direction 0–40 m s−1;
0–360 azimuth

Supply/drainage
solution

EC
The electrical conductivity (EC) of

a supply
or drainage solution

0–10 dS m−1

pH
The H+ ion concentration (acidity)

of a supply
or drainage solution

2–12

Soil
Temperature

The temperature of soil, media,
nutrient solution,

and root zone
−20–80 ◦C

Water tension Soil water tension (tensiometer) 0–100 kPa

Water content The volumetric water content
of soil 0–100%

Standard
node

Data/
communi-cation

Sensor
node

A device that can gather data and
process the sensor information to

monitor the environment and
communicate with other nodes

New sensor
(this study) Crop Leaf (fruit)

temperature

The leaf temperature of a crop
using non-contact infrared

radiation energy
−20–50 ◦C

1 The detection range of each sensor reports the range of minimum to maximum. 2 Calculated as the difference
between the saturated vapor pressure for a given air temperature and the absolute humidity and used for detecting
humidity deficiency.
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Our assessment related leaf temperature to air temperature and CO2 concentration.
Changes in leaf temperature are closely related to air temperature patterns, and the differ-
ence between air and leaf temperatures may affect crop transpiration [23]. Leaf temperature
may influence the level of CO2 in the air inside a greenhouse because the rate of CO2 uptake
during the day and catabolism after sunset are functions of temperature in proximity [26].
Managing leaf temperature and CO2 concentration is essential to improve crop photosyn-
thetic efficiency in protected horticulture. Fruit temperature can also be used to infer the
overall transfer of photosynthetic metabolites. In our smart greenhouse, based on real-time
leaf temperatures, we intend to control the opening or closing of side ventilation windows,
nutrient irrigation, and the heating and operation of screens and curtains in the greenhouse.
In addition, precision aeration and irrigation were regulated to maintain these variables for
greenhouse vegetable production.

This design concept of a leaf temperature sensor is based on the following principles
for smart greenhouse operation (Figure 1):

• When supplying nutrient solutions to vegetables, leaf temperature tends to decrease,
suggesting increased transpiration cooling [27]. Leaf temperature is usually negatively
correlated with transpiration by enhanced photosynthetic rate and heat distribution.

• CO2 assimilation patterns depend more on leaf temperature changes than air tempera-
ture [28]. Leaf CO2 assimilation is characterized by the thermal optimum, which is
crop-specific and a function of temperatures in proximity.

• A lower range of leaf temperatures than air temperatures is expected, for example,
when controlling window panels or heating. If this is the case, temperature stress will
likely limit crop growth.
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Figure 1. Alternative “smart farm” concept for greenhouse production. Farm operations are based
on a sensor network that collects real-time data on the proximal growth environments, such as leaf
temperature and atmospheric CO2, enabling the precise monitoring of vegetable growth to support
management decision making.

The timing and amount of aeration and irrigation can be directly determined based on
the physiological responses of the crop, such as the number of leaves, leaf width, and leaf
length. Approaches are available for crop imaging and analysis [29,30]. However, due to
the lack of image data and analytical development, it is premature to consider such aspects
in our design concept.

2.2. Development of New Hardware Components for Sensing

A conventional smart farm is based on a combination of sensors designed for tem-
perature, moisture, and CO2 concentration measurements, in which analog outputs on
their signals are available (Figure 2). Advances in infrared technology allow for a mobile
sensor that measures a wide range of leaf temperatures to be integrated with these stan-
dard sensors (Figure 2). In this study, we developed a new sensor node with a built-in
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16 × 4 thermopile infrared array sensor (DIWELL Electronics Co., Ltd., Gunpo, Republic of
Korea) that simultaneously measures the temperature on a surface divided into 64 pixels
(Figure 3). The non-contact infrared method, which can measure the ambient temperature
of the leaf within 250 ms, was used for leaf temperature measurements. For this sensor,
the infrared temperature range was between −30 ◦C and 300 ◦C at a resolution of 0.1 ◦C
with a high accuracy of ±0.2 ◦C. The operating temperature ranged between −20 ◦C and
50 ◦C at 15 cm from the leaf surface. The field of view was set to 35.49◦ and 9.15◦. We
calibrated the sensor settings based on (1) the reference measurement of temperatures with
a contact thermometer on the leaf surface and (2) temperatures around the leaves with
a portable thermometer. Figure A1 shows a prototype of new hardware for measuring
leaf temperature.
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Figure 2. Conventional “smart farm” approaches used for sensor configuration, communication, and
data management (a) and alternative approaches with the addition of leaf temperature monitoring (b).

We designed the main circuit and printed circuit board for the leaf temperature sensor
node by applying the STM32L476 process. This device is an ultralow-power microcontroller
based on the high-performance ARM® Cortex®-M4 32 bit reduced instruction set computer
core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a floating-
point unit with single precision, supporting all ARM single-precision data-processing
instructions and data types. It also implements a complete set of digital signal processor
instructions and a memory protection unit to enhance application security. We used the
universal asynchronous receiver–transmitter 3.3 V transistor–transistor logic (UART 3.3 V
TTL) method for serial communication. We designed a microprocessor for communication
purposes using the RS485 Modbus method with a PC component. By design and in
principle, the temperature sensor enables the measurement of the ambient temperature
and infrared temperature of the leaves of a target crop. Thus, we adopted the same sensor
to measure the temperature on the surface of the fruits.

We also developed a temperature–humidity–CO2 sensor in one sensing node. In
this study, we applied the nondispersive infrared method for sensing CO2 within the
0–3000 ppm range. This method allows the signal outputs to be monitored and updated
every 2.0 s, which are transferred through a UART 3.3 V TTL 9600 bps. The control
equipment enabled the control and monitoring of analog and digital signal outputs. This
sensor can measure temperatures in the range of −20 ◦C to 80 ◦C with an accuracy of
±0.3 ◦C. The response times were 5–30 s. Lastly, relative humidity (0–100% range) was
sensed with an accuracy of ±2%, and its response time was 8 s. The leaf temperature
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sensor microprocessor also collected data from the air temperature sensor, CO2 sensor,
and others (Table 1). Specifically, we used the recommended standard 232 (RS232C) for
serial communication. We present the main software user interface and its block diagram
in Figures A2 and A3.
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each pixel are 0.93 cm and 0.99 cm, respectively.

2.3. New Software Components for the Collection and Analysis of Sensing Data

In parallel with hardware development, we developed new software to receive digital
signals from the sensor node through RS-485 Modbus communication, store data in the
database, and visualize them in units of 1 min. The software specifications are outlined
in Table 2, which include the operation system, communication methods, source codes,
and a list of information. For our development and application process, a local database
management system (DBMS) was created in MariaDB 10.4 and Net Framework 4.0 (SP1).
The database schema and 32 table specifications were designed based on the entity rela-
tionship diagram and configuration information. It should be noted that we used currently
available standard equipment to operate aeration, nutrient supply, and heating without
any further modification. Data requirement for analysis is presented in Table A1.
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Table 2. Specifications for hardware and software developed for this study.

Task Description

Operation system Microsoft Windows 10 Pro (64 bits)

Communication method RS232C 1, TCP/IP 2, RS485 Modbus

Source code Written in C/C++, Python

Hardware/sensors

• Integration with and the detection of
hardware—drag and drop, UI data analytics

• The configuration of sensor installation locations
• The confirmation of communication status

Data collection/ display

• Outdoor conditions: temperature, humidity, light
intensity, wind direction, wind speed

• Indoor environments: temperature, humidity,
light intensity, water content, growth media
weight, leaf temperature, fruit temperature

• The display of photosynthesis-related variables
(temperature, humidity, CO2, leaf temperature)

• The collection of data every 200 ms
• The display of data per minute

Data interpretation

• Hourly temperatures, saturation water vapor
pressure, moisture deficiency, dew point,
absolute humidity

• The provision of a humidity deficit table to
evaluate soil moisture deficiency

• The estimation of acceptable ranges based on the
“Mollier Diagram” for controlling environments

Maximum number of
connection nodes 255 channels

1 Recommended Standard 232. 2 Transmission control protocol/Internet protocol.

2.4. Case Studies—Status of Smart Farms in the Republic of Korea

The total vegetable production areas were as follows: 44,661, 49,261, 49,652, 49,758,
and 47,921 ha in 2016, 2017, 2018, 2019, and 2020, respectively [31]. In 2020, 52,444 protected
horticulture farms were reported in South Korea. Specifically, greenhouse tomatoes were
planted in 6391, 5782, 6058, 5706, and 5521 ha in 2016, 2017, 2018, 2019, and 2020, respec-
tively, with corresponding yields of 61.1, 61.4, 64.2, 62.8, and 62.3 Mg ha−1, showing an
annual variation of 0.5–4.4%. Approximately 16–58% of the total production systems used
nutrition culture. The cropped areas for strawberries were 5978, 5907, 5969, 6421, and 5634
ha in 2016, 2017, 2018, 2019, and 2020, respectively. Strawberries were mostly produced
in protected facilities, yielding 32.3, 35.7, 30.5, 36.3, and 28.8 Mg ha−1 for the same years.
Strawberry yields in facility cultivation were 56–79% higher than in field cultivation.

As of 2022, only 458 farms participated in the “smart farm” program [32]. Here,
tomatoes and strawberries were the dominant vegetables cultivated on 151 and 150 farms,
respectively. We selected 16 farms as a leading case in which a smart farm system was
implemented (Table 3). All farms, except for one, were equipped with a complex environ-
ment controller and nutrient solution suppliers. We used yield data from these leading
cases to compare production before and after the implementation of smart farming. These
data were used as a baseline to assess the performance of horticultural crops under smart
farming conditions.
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Table 3. An overview of case studies used in this study. For leading cases, data on the following
variables were collected: air temperature, humidity, CO2, illuminance, wind direction, wind speed,
rainfall, and yields. Case study 1 focused on the development of software, hardware, and information
collection, while case study 2 was established to improve a framework for data utilization. All
farms were equipped with a complex environment controller (mainly for aeration) and nutrient
solution suppliers.

Farm Type Sensing Type Commodity Number of
Farms

Year
Established

Leading case Standard data Tomatoes 16
11 farms (2016),
2 farms (2017),
3 farms (2019)

Case study 1 Leaf temperature Tomato 1 2017

Case study 2 Leaf temperature Tomato 1 2021
Leaf temperature Strawberry 2 2021

We selected three farms from among the leading cases that were previously developed
and tested. We established our case study using the following steps: (1) the establishment
of a new sensor network, including the leaf temperature sensing unit, (2) the collection
of sensing and yield data, and (3) data analysis and interpretation. Case study 1 was
established on a tomato farm (35◦04′02.83” N, 127◦55′36.38” E) near Gonyang-myeon,
Sacheon-si, Gyeongsangnam-do. This case study focused on developing software, hard-
ware, and data modules. Tomatoes were grown in a hydroponic greenhouse system. The
EC and pH of the nutrient solution were 2.5 dS m−1 and 5.5–6.0, respectively. The mean day
and night temperatures in the greenhouse were set to 25 ◦C and 15 ◦C during cultivation,
respectively. Case study 2, consisting of the same tomato farm, as in case study 1, as
well as two strawberry farms, utilized our new sensing data and relevant information to
further improve the framework for data utilization. The strawberry farms were located in
Jeonggok-ri, Sacheon-si, Gyeongsangnam-do (35◦07′37.25” N, 127◦55′54.31” E), Yeonsan-
myeon, Nonsan-si, and Chungcheongnam-do (36◦13′38.20” N, 127◦10′07.15” E). The new
sensing network should be a proof-of-concept based on a standard smart farm design. For
demonstration purposes, we reported yield data from the tomato farm and sensing data
from the strawberry farm in Jeonggok-ri, Sacheon-si, and Gyeongsangnam-do, using the
newly developed sensing component for leaf temperature. Strawberries were placed in
high-bench beds within a greenhouse and were grown hydroponically. The temperature in
the greenhouse was about 20/10 ◦C (day/night).

2.5. Data Analyses

Tomato yields were collected to calculate descriptive statistics and yield changes before
and after smart farming. All the sensing data (Table 1), including leaf temperature, were
stored every minute from 1 November 2021 to 26 December 2021. The time series were
aggregated into hourly data for each selected variable to reduce noise. Trends and season-
ality were tested using the augmented Dickey–Fuller (ADF) test [33], and autocorrelation
and partial autocorrelation were checked visually. Seasonal differencing was performed
on the data to ensure that the time series data were stationary. Correlation analysis was
performed on the differenced data. Furthermore, 95% confidence intervals were used to
calculate mean values and differences in means. The analysis was performed using R
statistical computing language and environment (version 4.0.5) [34]. We used the “stats”
package to aggregate data and test the temporal stationarity and base packages for seasonal
differencing. Pearson’s correlation analysis was performed using the “Hmisc” package [35].

3. Results

The mean and median tomato yields were 26.1 and 27.0 kg m−2 under smart farming
(Figure 4). These yields were generally 25–50% higher than the conventional yields before
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the implementation of the smart farm system. Specifically, smart farming with leaf temper-
ature sensing increased the yield by 28–43%. The maximum increase of 247% was obtained
at a farm with relatively low productivity. For some farms with high productivity under
conventional farming (e.g., over 30 kg m−2), the benefits of smart farm implementation
tended to decrease but are still evident.
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Figure 4. Boxplots of the measured tomato yields (a) and a scatter plot with linear regression to show
farm-level changes in yield (%) after smart farming (b) from conventional yields. The red circles
show the yields for a smart farm that implemented leaf temperature sensing.

Overall, ADF test results showed that all variables were stationary, except for the pH
and temperature of the drainage solution. However, these variables had a short-range
autocorrelation with typical diurnal variations, such as in temperature and CO2 concen-
tration (Figure 5). Diurnal temperature patterns show that changes in leaf temperature
(3–5 ◦C) tended to fluctuate more than air temperature (approximately 1 ◦C) when heating
the greenhouse between 6 a.m. and 9 a.m. After sunrise and before noon, leaf temperatures
appeared to increase from 8 ◦C to 12 ◦C compared to the rise in air temperatures from 10 ◦C
to 12 ◦C. When the thermal curtains were opened completely, higher leaf temperatures were
observed relative to the air temperatures, with a >4 ◦C fluctuation in the leaf temperature
due to the abrupt opening of thermal curtains, especially during winter. When the indoor
air temperature increased to 28 ◦C, lower temperatures were required to open the windows
on the sidewalls and roof. We observed a rapid drop in leaf temperature (around 7 ◦C)
when the air temperature varied by 0.5 ◦C.

Leaf temperature was significantly correlated with indoor air temperature and CO2
concentration (Table 4). Significant correlations were also found with the variables that
interacted with diurnal temperature patterns, such as dew point, absolute humidity, and
light intensity. However, a minor relationship was found between the variables for growth
media and supply and drainage solutions that were maintained uniformly.
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Variable r p-Value 

Indoor air temperature 0.79 <0.01 

Outdoor air temperature ns 0.613 

Soil (or growth media) temperature −0.33 <0.01 

Temperature of drainage solution −0.08 <0.01 

Dew point 0.86 <0.01 

Indoor air humidity 0.08 <0.01 

Outdoor air humidity −0.49 <0.01 

Humidity deficiency 0.23 <0.01 

Absolute humidity 0.82 <0.01 

CO2 concentrations inside the greenhouse −0.54 <0.01 

Light intensity inside the greenhouse 0.72 <0.01 

Light intensity outside the greenhouse ns 0.993 

Light integral inside the greenhouse 0.07 0.016 

Light integral outside the greenhouse ns 0.634 

Figure 5. Daily and mean temperatures and CO2 concentrations for strawberries. Daily values were
collected on 1 December 2021. Mean hourly values were calculated from 1 November 2021 to 26
December 2021. The shade indicates a 95% confidence interval for a difference in means.

Table 4. Correlations of leaf temperature with other environmental variables under monitoring.

Variable r p-Value

Indoor air temperature 0.79 <0.01
Outdoor air temperature ns 0.613
Soil (or growth media) temperature −0.33 <0.01
Temperature of drainage solution −0.08 <0.01
Dew point 0.86 <0.01
Indoor air humidity 0.08 <0.01
Outdoor air humidity −0.49 <0.01
Humidity deficiency 0.23 <0.01
Absolute humidity 0.82 <0.01
CO2 concentrations inside the greenhouse −0.54 <0.01
Light intensity inside the greenhouse 0.72 <0.01
Light intensity outside the greenhouse ns 0.993
Light integral inside the greenhouse 0.07 0.016
Light integral outside the greenhouse ns 0.634
EC of supply solution 0.20 <0.01
EC of drainage solution 0.14 <0.01
pH of supply solution −0.07 0.015
pH of drainage solution −0.19 <0.01
Weight of growth media ns 0.877
Total amount of drainage solution −0.07 <0.01

ns = not significant.
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4. Discussion

Greenhouse vegetable production has been considered a common practice in Korea
since greenhouse production methods were introduced in the early 1960s [36]. In addition
to the environmental sensors used in the Korean standard system, our system highlights
the acquisition of monitoring frameworks in a smart farm for the capacity to track down
crop photosynthetic performance. More practically, an efficient greenhouse system must
support microclimate control during greenhouse crop production [37] because enhancing
photosynthetic efficiency makes it possible to increase biomass production. In addition,
climate control influences a range of crop responses to nutrient supply, indicating that the
amount and application of a number of inputs can also be adjusted accordingly. Thus, the
level of technology employed in such systems is somewhat standardized, but the sensor
composition seems highly variable, with different time and labor requirements.

Leaf temperature is a function of multiple variables; most interact as stressors [38].
The contribution of this new information to environmental control and energy optimization
is less known. This task was challenging because it requires the use of a new design for
monitoring that encompasses additional sensing, data management, and the development
of control algorithms and applications.

Daily and mean variations in CO2 concentrations were caused by the crop’s CO2 up-
take during the day and then catabolism after sunset (hence CO2 accumulation). Therefore,
CO2 data can be used to detect crop stress. For such a greenhouse, additional variation in
CO2 concentrations may also correlate with the timing of irrigation, which would enhance
microbial activity in the medium. In particular, CO2 uptake potential is highly affected
by temperature in proximity, as air temperatures show typical diurnal patterns. Active
crop photosynthesis often leads to high transpirational cooling. For example, cotton ex-
hibits leaf temperatures fluctuating by 8–10 ◦C [39]. Moreover, subsequent airflow over
the leaf surface could transiently restore ambient CO2 and cool down a head space in a
complex manner [40], which explains some fluctuations in leaf temperature. This suggests
that the diurnal temperature range is an essential indicator of changing climate inside a
greenhouse, which must be monitored and controlled. For example, there was almost
no CO2 assimilation owing to a rapid drop in leaf temperature at approximately 7 ◦C.
Therefore, the photosynthetic efficiency appeared to be limited. In that direction, our study
monitored leaf temperatures as a proxy based on the relationship between leaf temperature,
air temperature, and CO2 concentration.

For most conventional smart farms, opening/closing windows and heating are based
on air temperature readings. However, we demonstrated the importance of monitoring leaf
temperatures to minimize direct crop temperature stress. Our results indicate that aeration
must be performed in a slow mode to increase photosynthetic efficiency in the morning. In
particular, aeration should be performed when leaf temperatures are higher than 25 ◦C until
11 a.m. Typically, temperature changes of more than 4 ◦C are considered signals for a crop
under a stress effect. Therefore, it is important to open the thermal curtains progressively to
avoid potential temperature stress on crop growth, especially during winter. It is feasible to
effectively control the operation of thermal curtains during the winter season. We observed
a rapid drop in leaf temperature (around 7 ◦C) when the air temperature varied by 0.5 ◦C,
while lower temperatures are required to open the windows on the sidewalls and roof.
Similarly, this suggests potential temperature stress on crop growth when the windows are
opened without caution.

Monitoring leaf temperature as a key parameter can be used to predict key physi-
ological processes such as net photosynthesis, transpiration, and biomass accumulation.
Wang, Iddio, and Ewers [3] reviewed evapotranspiration (ET) models and key parameters
for the estimation of ET to quantify crop performance in CEA. However, these models are
calibrated using different methods, and validation is often lacking in the modeling process.
This suggests that new data from the continuous monitoring and updating of existing data
are important for data-driven models. Although used for study, the measurement of leaf
temperature with thermocouples causes measurement errors due to the direct contact with



Horticulturae 2023, 9, 518 12 of 16

the leaf, which results in heat conduction [24,41]. With the rapid development of infrared
technology, scientists have used infrared radiation thermometers, which perform non-
contact measurements of leaf temperature. Our study used infrared radiation thermometer
systems that accurately measure leaf temperature without heat resistance. We expect that
the new sensing network of vegetable production under greenhouse conditions will further
improve our understanding of the contribution of controlling the growth environment and
other microclimate variables for optimized crop growth (e.g., at harvest).

Further research is required to accurately monitor leaf temperature for the improve-
ment of smart farms and assess the health and state of crops. Ragaveena, Edward, and
Surendran [4] expect that “smart farming” technologies will be an integral part of farming
and highlight the importance of “real-time monitoring of nutrition solution management
and pest management” for crops grown in controlled environments. There are unknowns
related to our sensor applications in the context of smart farming, such as the location and
number of sensors, uncertain relationships with other yield-limiting factors, and a lack
of consideration (in relation to heating, ventilation, lighting, etc.). Research should also
address the growth response of horticulture crops and the use efficiencies of water, carbon,
and nutrients to leaf temperatures. For example, associations between leaf temperatures
and parameters are known in terms of gas exchange and heat balance [42].

5. Conclusions

Our study developed new hardware and software components for leaf temperature
sensing integrated into a conventional smart farm system. In this study, we described
the application and evaluation of leaf temperature sensing in a smart greenhouse farming
system for tomatoes and strawberries. Various real-time information obtained from sensors
can be used to improve crop yields. Among them, our study highlights that the precise
sensing of leaf temperatures is vital for efficient smart farm applications. Our approach
uses fixed infrared sensors with the advantages of a wide range and fast response. There-
fore, it is practical to accurately measure leaf temperatures that differ in the range of daily
changes, their fluctuations, and the phase lag of changes compared to air temperatures.
Leaf temperature changes can represent the photosynthesis or respiration of the crop. The
data also help to detect crop sensitivity to cold air (due to ventilation) and nutrient and
moisture absorption. In addition, this sensing node is highly feasible as it can be connected
to other smart farm systems that integrate management. Further engineering work should
be conducted to explore energy-efficient heating, cooling, automation, and control methods.
As an emerging trend in agriculture, big data analytics and artificial intelligence have
recently attracted attention. We should further develop a smart greenhouse model that can
optimize leaf temperatures and supply nutrient solutions to improve productivity interac-
tively. The introduction of the smart greenhouse model demonstrated the applicability of
these systems for agricultural management and information gathering in greenhouses.

This study parallels a recent trend in greenhouse production based on IoT- and ICT-
based applications in smart farming. ICT and IoT technologies must be efficiently integrated
into agriculture. Researchers will continue to study new technologies regarding trends
in smart agriculture. We expect that our study will offer new directions for the further
development of IoT- and ICT-based smart agriculture. Low-cost solutions with sensor
operation, low maintenance, and high energy efficiency are in demand. Because leaf
temperature in crops has become one of the most critical factors in the stage of crop growth,
researchers have begun to pay more attention on it. Research on leaf temperature is still in
its primary stages and focusses on studying evapotranspiration, irrigation, and crop yield.
The application of leaf temperature in greenhouses should be developed to encourage
farmers to engage in smart farming. Moreover, there is the need to perform an economic
assessment of how suitable this system is for large areas such as greenhouses. Further
studies are required to determine the effects of temperature on different parts of leaves and
their growth stages for different crop species.
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Appendix A

Table A1. Data requirement for analysis.

Management Element Data

User Management

- Must be able to manage user information
- User information includes management number, name,

password, and e-mail information management

Sensor Management

- Must be able to manage sensor information
- Sensor information includes a sensor node communication

method, a computer port type, a sensor board ID, a sensor
type, coordinates displayed on UI, sensor selection
activation, and sensor management channel
information management

- Should be possible to store the value taken from the sensor
in real time, and real-time value storage, today’s sensor
value storage, and accumulated sensor value storage should
be performed

- Need information to know which zone it was installed inHorticulturae 2023, 9, x FOR PEER REVIEW 15 of 17 
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